Eşitsizlikler Konusu

 

matematik deneme sınavı

matematik ve geometri soruları

   

Eşitsizlikler Konusu Konu Anlatım

Eşitsizlikler

f(x) > 0, f(x) < 0  gibi ifadelere fonksiyonların eşitsizliği denir.

Bu eşitsizlikleri sağlayan sayıların oluşturduğu kümeye de eşitsizliğin çözüm kümesi denir.

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER

 olmak üzere, f(x) = mx + n koşulunu sağlayan noktalar analitik düzlemde bir doğru belirtir.



İKİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER


koşulunu sağlayan noktalar analitik düzlemde bir parabol belirtir.









çözüm kümesi bütün gerçel sayılar ise



çözüm kümesi bütün gerçel sayılar ise


çözüm kümesi boş kümedir.

Polinom fonksiyonlarından oluşan rasyonel fonksiyonların eşitsizliği incelenirken aşağıdaki 5 adım izlenerek çözüm kümesi bulunur. Bu, bütün eşitsizliklerde uygulanabilen pratik bir çözüm yoludur.

  1. Adım : Verilen ifadedeki her çarpan ayrı ayrı sıfıra eşitlenerek kökler bulunur.
  2. Adım : Bulunan bu kökler sayı doğrusunda sıralanır.
  3. Adım : Sistemin işareti bulunur.

Sistemin işareti; her çarpandaki en büyük dereceli değişkenlerin katsayılarının çarpımının işaretidir.

  1. Adım : Bulunan bu işaret, tablonun en sağındaki kutuya yazılır.
  2. Adım : Tablodaki diğer kutular sırayla sola doğru doldurulur.

Tek katlı kökün soluna sağındaki işaretin zıttı, çift katlı kökün soluna sağındaki işaretin aynısı yazılır.

Çift katlı köklerde grafik x eksenine teğet olduğundan eğri, o noktada da işaret değiştirmez.


 ise  x=-1   çift katlı köktür.

 ise  x=1   tek katlı köktür.


çözüm kümesine  P(x)=0  ı sağlayan x değerleri alınırken; Q(x)=0  ı sağlayan x değerleri alınmaz.

EŞİTSİZLİK SİSTEMİ

İki ya da daha fazla eşitsizliğin oluşturduğu sisteme eşitsizlik sistemi denir.

Bir eşitsizlik sistemindeki eşitsizlikleri birlikte sağlayan değerlerin oluşturduğu kümeye eşitsizlik sisteminin çözüm kümesi denir.

Eşitsizlik sisteminde her eşitsizliğin çözüm aralığı ayrı ayrı bulunur. Bu aralıkların kesişim kümesi sistemin çözüm kümesidir.

Konuyla İlgili Dökümanlar

# Dosya Adı Link İndirme Sayısı
1 II.dereceden eşitsizlikler İndirmek için tıklayınız İndirme Sayısı:0