Paralel Kenar Konusu

 

matematik deneme sınavı

matematik ve geometri soruları

   

Paralelkenar Konusu Konu Anlatım

Paralelkenar

Karşılıklı kenarları birbirine paralel olan dörtgenlere paralelkenar denir. Paralelkenar özel dörtgenler kategorisinde incelenen özel bir geometrik yapıdır. Bütün dörtgenlerde olduğu gibi paralelkenarda da birçok işlem üçgensel bölgeler yardımıyla yapılır. Üçgenlerin en temel geometrik yapılar olduğunu bahsetmiştik. Paralelkenarları detaylı incelemeden önce paralelkenar özelliklerini basitçe liste şeklinde verelim. Bu listede özetle verilenler aşağıda detaylı işlenecektir.

  • Paralelkenarda karşılıklı kenar uzunlukları eşittir.
  • Karşılıklı açıların ölçüleri birbirine eşittir.
  • Köşegenler paralelkenarı iki eş üçgene böler.
  • Paralelkenar köşegenleri birbirini ortalar.
  • Çapraz karşıt açıların ölçüsü eşittir.
  • Komşu açılar birbirini bütünler.

Paralelkenarda Açı Özellikleri

Paralelkenarda açı özellikleri doğruda açılar konusunda anlatılan paralellik doğrultusunda şekillenir. Aşağıdaki şekil paralelkenarın temel özelliklerini göstermektedir.


Paralelkenara köşegen çizildiği zaman yeni açı eşitlikleri ortaya çıkar. Ayrıca köşegenlerin birbirini iki eş parçaya ayırması da önemli bir özelliktir.


Komşu açılar birbirini 180 e tamamladığı için açıortayların toplamı 90 derece olur. Bu nedenle açıortayların birleşmesiyle bir dik üçgen ortaya çıkar.

Soru: Aşağıdaki şekilde paralelkenar köşelerinde çıkan iki açıortay bir noktada birleşmiştir. Buna göre x ile gösterilen kenar uzunluğu kaç birimdir.


Çözüm: Soruda şaşırtma amacıyla x kenarı karşıda verilmiştir. Ancak karşılıklı kenar uzunlukları eşit olduğu için aşağıdaki kenar da aynen x olacaktır. Açıortayların oluşturduğu üçgen dik üçgen olacağı için soruda Pisagor bağıntısı kullanılır.

22 + 42 = x2 olur. Buradan x = |AB| = |DC| = √20 = 2√5 olur.

Paralelkenarda Benzerlik

Özellikle kelebek benzerliği soruları başta olmak üzere paralelkenarda benzerlik çok ön plana çıkmaktadır. Çünkü benzerlik açıların eşit olmasını gerektirir. Bu da paralellikle mümkün olmaktadır. Paralelkenarda açı ve benzerlik uygulamalarını iyi kavrarsak konuyu da büyük oranda halletmiş oluruz.

Aşağıdaki soruda çeşitli bilgiler verilmiş ve x uzunluğu sorulmaktadır. Burada kelebek benzerliği paralellikten dolayı doğal olarak ortaya çıkmaktadır.


Soruda dikkat edilirse |AD| kenarı x + 6 olarak verilmiştir. Eşitlikten dolayı |BC| kenarı da x + 6 olacaktır.

Benzerlik kurallarını uygularsak 4/12 = x /( x + 6) olur. Buradan da x = 3 bulunur.

Paralelkenar nedir bilmeden ve onu tanımadan paralelkenar özellikleri de bilinmez. Bu nedenle özellikleri kavramaya çalışmadan önce şekli iyi tanımak önemlidir.