Üslü Sayılar Konusu

 

matematik deneme sınavı

matematik ve geometri soruları

Üslü Sayılar Konusu Konu Anlatım

Üstü İfadeler

a bir reel sayı ve n bir pozitif tam sayı olmak üzere n tane sayının yanyana çarpılması a nın n. kuvveti olarak adlandırılır. Bu tür ifadelerde çarpılan sayıya (a)taban, çarpılma adedine (n) kuvvet (üs) ve ifadelere de üslü ifade denir.

Üslü İfadelerin Özellikleri

  1. a sıfırdan farklı bir reel sayı olmak üzere, a0 = 1 dir.

Örnek:

50 = 1

1530 = 1

  1. 00 ifadesi tanımsızdır.
  2. 1n = 1 dir. n Î IR

Örnek:1234 = 1

145 = 1

  1. amn ifadesi belirsizdir. Çünkü n sayısının; m nin üssü mü yoksa am nin üssü mü olduğu belli değildir.
  2.  Bir üstlü ifadenin üssü, üstlerin çarpımıdır. (an)m = (am)n = am.dir.

Örnek:

(22)3 = (23)2 olduğunu gösterelim.

Çözüm:

(22)3 = 2= 43 = 64

(23)2 = 26 = 82 = 64

  1. a bir reel sayı olmak üzere, a-n = (1 / an) dir. Benzer şekilde a ve b sıfırdan farklı reel sayılar olmak üzere,   (a / b)n = (b / a)-n dir.

  2. Pozitif sayıların bütün kuvvetleri pozitiftir. a > 0 ⇒ an > 0 dır.

  3. Negatif sayıların çift kuvvetleri pozitiftir. a > 0 ve n çift sayı ise (-a)n = an > 0 dır.

    Örnek:

    (-3)2 = 32 = 9 > 0

    (-5)4 = 54 = 625 > 0

  4. Negatif sayıların tek kuvvetleri negatiftir. a > 0 ve n tek sayı ise (-a)n = -an < 0 dır.

  5.  Tabanları ve üsleri aynı olan ifadeleri toplarken yada çıkarırken ifadeyi üslü ifade parantezine alıp işlemi katsayılar arasına uyguluyoruz.  a.xn ± b.xn = (a ± b).xn dir.

  6. Tabanları ya da üsleri farklı olan ifadeler arasında çıkarma ya da toplama işlemi yapılamaz.

  7. Tabanları eşit olan üslü ifadelerin çarpımını bulmak için; üsler toplamı ortak tabanın üssü olarak yazılır. am.an = am+n dir.

  8. Örnek:

    103.105 = 10(5 + 3) = 108

    54.5-1 = 5(4 - 1) = 53

  9. Üstleri eşit olan üslü ifadelerin çarpımını bulmak için tabanlar çarpımı ortak üssün tabanı olarak yazılır. an.b= (a.b)n dir.
  10. Örnek:

    28.58 = (2.5)8 = 108

    23.53.33 = (2.5.3)3 = (30)3 = 27000

    Örnek:

    3x = p

    olduğuna göre 9x+1 ifadesinin p türünden değerini bulalım.

    Çözüm:

    9x+1 = 9x.91

             = (32)x.9

             = (3x)2.9

             = 9p2

    Örnek:

    15= 3a-2

    olduğuna göre, 5nın değerini bulalım.

    Çözüm:

    15= 3a-2 ⇒ (3.5)a = 3a.3-2

    3a.5a = 3a.3-2

    53-2

  11. Tabanları eşit olan üslü ifadelerin bölümünü bulmak için; paydaki sayının üssünden paydadaki sayının üssü çıkarılır, ortak tabanın üssü olarak yazılır. (am / an) = am-n dir.

  12. Üsleri eşit olan üslü ifadelerin bölümünü bulmak için; payın tabanı paydanın tabanına bölünür, ortak üs bölümün üssü olarak yazılır. (am / bm) = (a / b)m dir.

  13. Tabanları eşit olan üslü denklemlerin üsleri de eşittir a ≠ 0, a ≠ -1, a ≠ 1 olmak üzere, am = an ⇒ m = n dir.

  14. Üsleri eşit olan denklemlerde üs tek sayı ise tabanlar eşit, üs çift sayı ise tabanlar eşit ya da tabanlardan biri diğerinin ters işaretlisine eşittir. 

  15. xn = 1 ise ya x = 1 dir, ya n = 0 dır yada n çift sayı x = -1 dir.